Phaseless Recovery Using the Gauss–Newton Method
نویسندگان
چکیده
منابع مشابه
Phaseless Recovery Using the Gauss-Newton Method
Abstract. In this paper, we develop a concrete algorithm for phase retrieval, which we refer to as GaussNewton algorithm. In short, this algorithm starts with a good initial estimation, which is obtained by a modified spectral method, and then update the iteration point by a Gauss-Newton iteration step. We prove that a re-sampled version of this algorithm quadratically converges to the solution...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Phaseless Signal Recovery in Infinite Dimensional Spaces using Structured Modulations
This paper considers the recovery of continuous signals in infinite dimensional spaces from the magnitude of its frequency samples. It proposes a sampling scheme which involves a combination of oversampling and specific structured modulations. This allows for almost every signal with finite support to be reconstructed from its magnitude samples in the frequency domain up to a unimodular constan...
متن کاملStable optimizationless recovery from phaseless linear measurements
We address the problem of recovering an n-vector from m linear measurements lacking sign or phase information. We show that lifting and semidefinite relaxation suffice by themselves for stable recovery in the setting of m = O(n logn) random sensing vectors, with high probability. The recovery method is optimizationless in the sense that trace minimization in the PhaseLift procedure is unnecessa...
متن کاملStable Signal Recovery from Phaseless Measurements
The aim of this paper is to study the stability of the l1 minimization for the compressive phase retrieval and to extend the instance-optimality in compressed sensing to the real phase retrieval setting. We first show that the m = O(k log(N/k)) measurements is enough to guarantee the l1 minimization to recover k-sparse signals stably provided the measurement matrix A satisfies the strong RIP pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2017
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2017.2742981